61 research outputs found

    Формирование понимания и употребления глубинных синтаксических конструкций у детей с расстройствами аутистического спектра

    Get PDF
    В ходе анализа научных исследований было выявлено, что дети с расстройствами аутистического спектра испытывают трудности в спонтанном овладении фразовой речью. Наблюдения показали, что традиционные методы формирования глубинных синтаксических конструкций в своём первозданном виде являются не совсем эффективным методом в работе с детьми с аутизмом. Проведенный эксперимент доказал, что использование традиционной методики по формированию понимания и употребления глубинных синтаксических конструкций будет более эффективно для обучения детей с расстройствами аутистического спектра при условии, что она будет использована в сочетании с методами прикладного анализа поведения

    A Simple Analytical Model of the Angular Momentum Transformation in Strongly Focused Light Beams

    Full text link
    A ray-optics model is proposed to describe the vector beam transformation in a strongly focusing optical system. In contrast to usual approaches basing on the focused field distribution near the focal plane, we employ the transformed beam pattern formed immediately near the exit pupil. In this cross section, details of the output field distribution are of minor physical interest but proper allowance is made for transformation of the incident beam polarization state. This enables to obtain the spin and orbital angular momentum representations which are valid everywhere in the transformed beam space. Simple analytical results are available for the transversely homogeneous circularly polarized incident beam limited only by the circular aperture. Behavior of the spin and orbital angular momenta of the output beam and their dependences on the focusing strength (aperture angle) are analyzed. The obtained analytical results are in good qualitative and reasonable quantitative agreement to the calculation performed for the spatially inhomogeneous Gaussian and Laguerre-Gaussian beams. In application to Laguerre-Gaussian beams, the model provides possibility for analyzing the angular momentum transformation in beams already possessing some mixture of the spin and orbital angular momenta. The model supplies efficient and physically transparent means for qualitative analysis of the spin-to-orbital angular momentum conversion. It can be generalized to incident beams with complicated spatial and polarization structure.Comment: 18 pages, 5 figures. The paper has appeared as an attempt to clearly understand transformations of the light beam polarization in the course of strong focusing. It provides description of the optical vortex formation after focusing a circularly polarized beam and explains why the the orbital angular momentum emerges in the focused bea

    Internal flows and energy circulation in light beams

    Full text link
    We review optical phenomena associated with the internal energy redistribution which accompany propagation and transformations of monochromatic light fields in homogeneous media. The total energy flow (linear-momentum density, Poynting vector) can be divided into spin part associated with the polarization and orbital part associated with the spatial inhomogeneity. We give general description of the internal flows in the coordinate and momentum (angular spectrum) representations for both nonparaxial and paraxial fields. This enables one to determine local densities and integral values of the spin and orbital angular momenta of the field. We analyse patterns of the internal flows in standard beam models (Gaussian, Laguerre-Gaussian, flat-top beam, etc.), which provide an insightful picture of the energy transport. The emphasize is made to the singular points of the flow fields. We describe the spin-orbit and orbit-orbit interactions in the processes of beam focusing and symmetry breakdown. Finally, we consider how the energy flows manifest themselves in the mechanical action on probing particles and in the transformations of a propagating beam subjected to a transverse perturbation.Comment: 50 pages, 21 figures, 173 references. This is the final version of the manuscript (v1) modified in accord to the referee's remarks and with allowance for the recent development. The main changes are: additional discussion of the energy flows in Bessel beams (section 4.1), a lot of new references are added and the Conclusion is shortened and made more accurat

    Single-molecule experiments in biological physics: methods and applications

    Full text link
    I review single-molecule experiments (SME) in biological physics. Recent technological developments have provided the tools to design and build scientific instruments of high enough sensitivity and precision to manipulate and visualize individual molecules and measure microscopic forces. Using SME it is possible to: manipulate molecules one at a time and measure distributions describing molecular properties; characterize the kinetics of biomolecular reactions and; detect molecular intermediates. SME provide the additional information about thermodynamics and kinetics of biomolecular processes. This complements information obtained in traditional bulk assays. In SME it is also possible to measure small energies and detect large Brownian deviations in biomolecular reactions, thereby offering new methods and systems to scrutinize the basic foundations of statistical mechanics. This review is written at a very introductory level emphasizing the importance of SME to scientists interested in knowing the common playground of ideas and the interdisciplinary topics accessible by these techniques. The review discusses SME from an experimental perspective, first exposing the most common experimental methodologies and later presenting various molecular systems where such techniques have been applied. I briefly discuss experimental techniques such as atomic-force microscopy (AFM), laser optical tweezers (LOT), magnetic tweezers (MT), biomembrane force probe (BFP) and single-molecule fluorescence (SMF). I then present several applications of SME to the study of nucleic acids (DNA, RNA and DNA condensation), proteins (protein-protein interactions, protein folding and molecular motors). Finally, I discuss applications of SME to the study of the nonequilibrium thermodynamics of small systems and the experimental verification of fluctuation theorems. I conclude with a discussion of open questions and future perspectives.Comment: Latex, 60 pages, 12 figures, Topical Review for J. Phys. C (Cond. Matt

    Interfering Bessel beams for optical micromanipulation

    No full text
    We examine the properties of interfering high-order Bessel beams. We implement an experimental setup that allows us to realize these interferograms, using interfering Laguerre-Gaussian beams and an axicon. We demonstrate the use of such beams for controlled rotation of microscopic particles in optical tweezers and rotators. The self-healing properties of interfering Bessel beams allow the simultaneous manipulation and rotation of particles in spatially separated sample cells. (C) 2003 Optical Society of America.</p

    Interference from multiple trapped colloids in an optical vortex beam

    No full text
    Laguerre-Gaussian (LG) beams are important in optical micromanipulation. We show that optically trapped microparticles within a monochromatic LG beam may lead to the formation of unique intensity patterns in the far field due to multiple interference of the forward scattered light from each particle. Trapped colloids create far field interference that exhibits distinct spiral wave patterns that are directly correlated to the helicity of the LG beam. Using two trapped particles, we demonstrate the first microscopic version of a Young's slits type experiment and detect the azimuthal phase variation around the LG beam circumference. This novel technique may be implemented to study the relative phase and spatial coherence of two points in trapping light fields with arbitrary wavefronts. (c) 2006 Optical Society of America.</p

    Near-field optical micromanipulation with cavity enhanced evanescent waves

    No full text
    We show that the forces associated with near-field optical micromanipulation can be greatly increased through the use of cavity enhanced evanescent waves. This approach utilizes a resonant dielectric waveguide structure and a prism coupler to produce Fabry-Perot-like cavity modes at a dielectric-fluid interface. Fabricated structures show a ten times enhancement in the optical interaction and optical force for micrometer-sized colloids. In addition, stable accumulation and ordering of large scale arrays of colloids are demonstrated using two counter-propagating cavity enhanced evanescent waves. (c) 2006 American Institute of Physics.</p

    Optical conveyor belt for delivery of submicron objects

    No full text
    `We demonstrate an optical conveyor belt that provides trapping and subsequent precise delivery of several submicron particles over a distance of hundreds of micrometers. This tool is based on a standing wave (SW) created from two counter-propagating nondiffracting beams where the phase of one of the beams can be changed. Therefore, the whole structure of SW nodes and antinodes moves delivering confined micro-objects to specific regions in space. Based on the theoretical calculations, we confirm experimentally that certain sizes of polystyrene particles jump more easily between neighboring axial traps and the influence of the SW is much weaker for certain sizes of trapped object. Moreover, the measured ratios of longitudinal and lateral optical trap stiffnesses are generally an order of magnitude higher compared to the classical single beam optical trap. (c) 2005 American Institute of Physics.</p
    corecore